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Abstract 

Breast cancer (BRCA) is the primary cause of mortality among females globally. The combination of advanced 
genomic analysis with proteomics characterization to construct a protein prognostic model will help to screen 
effective biomarkers and find new therapeutic directions. This study obtained proteomics data from The Cancer 
Proteome Atlas (TCPA) dataset and clinical data from The Cancer Genome Atlas (TCGA) dataset. Kaplan–Meier and 
Cox regression analyses were used to construct a prognostic risk model, which was consisted of 6 proteins (CASPASE-
7CLEAVEDD198, NFKBP65-pS536, PCADHERIN, P27, X4EBP1-pT70, and EIF4G). Based on risk curves, survival curves, 
receiver operating characteristic curves, and independent prognostic analysis, the protein prognostic model could be 
viewed as an independent factor to accurately predict the survival time of BRCA patients. We further validated that 
this prognostic model had good predictive performance in the GSE88770 dataset. The expression of 6 proteins was 
significantly associated with the overall survival of BRCA patients. The 6 proteins and encoding genes were differen-
tially expressed in normal and primary tumor tissues and in different BRCA stages. In addition, we verified the expres-
sion of 3 differential proteins by immunohistochemistry and found that CDH3 and EIF4G1 were significantly higher 
in breast cancer tissues. Functional enrichment analysis indicated that the 6 genes were mainly related to the HIF-1 
signaling pathway and the PI3K-AKT signaling pathway. This study suggested that the prognosis-related proteins 
might serve as new biomarkers for BRCA diagnosis, and that the risk model could be used to predict the prognosis of 
BRCA patients.

Keywords:  Breast cancer, Proteomics, TCPA, TCGA​, Prognostic risk model

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​
mmons.​org/​publi​cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Open Access

†Bo Huang and Xujun Zhang have contributed equally to this work and share 
authorship

*Correspondence:  ndyfy08004@ncu.edu.cn

4 Department of Hospital Infection Control, The First Affiliated Hospital 
of Nanchang University, 17 Yongwai Road, Donghu District, Nanchang, China
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12920-022-01299-5&domain=pdf


Page 2 of 14Huang et al. BMC Medical Genomics          (2022) 15:148 

Introduction
Breast cancer is the most common malignant tumor in 
women and ranks as the leading cause of cancer-related 
death in women, accounting for 15.3% of all cancer 
deaths among females. In 2020, according to the latest 
data released by the International Agency for Research 
on Cancer (IARC) of the World Health Organization 
(WHO) (http://​www.​irac.​fr), there were 19.29 million 
new cancer patients, of which 2.26 million were breast 
cancer, replacing lung cancer as the leading cause of can-
cer [1]. One of the underlying causes of the increased 
incidence of breast cancer is the changing risk factors, 
such as delayed and reduced childbearing, overweight 
and obesity, lifestyle, and heredity. The prognosis of 
patients with breast cancer depends on the tumor stage. 
The five-year survival rate for early breast cancer is 
close to 100%, while the survival rate for advanced-stage 
patients remains poor [2]. Therefore, the early screen-
ing and diagnosis of breast cancer are critical. As the 
gold standard for the early detection of breast cancer, the 
screening modality of mammography is sensitively for 
fatty breast tissue and contributes to significantly reduced 
mortality [3]. However, mammography is not particu-
larly useful for dense breast tissue. Studies indicate that 
women with dense tissue have a 4- to 6-fold greater risk 
of developing breast cancer than those with no dense tis-
sue in the breast [4, 5]. The automated breast ultrasound 
(ABUS) screening system designed for dense breast tis-
sue perfectly addressed the limitations of mammography 
[6]. Although breast cancer screening can assist diagnosis 
and treatment, yet it has several limitations. A frequent 
limitation is a false-positive screening outcome, leading 
to overdiagnosis, which may cause distress and anxiety 
in women [7]. In addition, screening cannot detect all 
breast cancers. Therefore, it is very important to search 
for more accurate and sensitive diagnostic and prognos-
tic biomarkers.

To date, some proteins and RNAs have been proved to 
be prognostic factors for cancer. Common serum protein 
tumor markers, such as CEA, AFP, CA-125, and CA-199, 
have been widely used for the diagnosis and treatment of 
various cancer types. Carcinoembryonic antigen (CEA) 
originates from the cavitary organs and has relatively 
high sensitivity for adenocarcinomas [8]. CEA is the most 
extensively used tumor marker, including in lung adeno-
carcinoma, colorectal cancer, and gastric cancer [9–11]. 
Serum α-fetoprotein (AFP) is the most classic diagnostic 
marker in hepatocellular carcinoma (HCC) [12]. Cancer 
antigen 125 (CA125) is a traditional marker for ovarian 
cancer screening [13] and is insufficient to diagnose ovar-
ian cancer due to a lack of specificity [14]. Carbohydrate 
antigen 199 (CA199) is the most sensitive tumor marker 
for pancreatic cancer [15]. Squamous cell carcinoma 

antigen (SCC-Ag) is the most common early tumor 
marker for cervical cancer [16]. In addition, a growing 
number of studies have reported the potential of differ-
ent RNAs as diagnostic biomarkers in cancer. The long 
noncoding RNA CCEPR (cervical carcinoma expressed 
PCNA regulatory) is a potential prognostic biomarker 
and therapeutic target [17]. Plasma miR-21 and miR-222 
were increased in patients with gastric cancer and could 
be potential diagnostic biomarkers of gastric cancer [18]. 
miR1246 is a biomarker in esophageal and gastric cancers 
[19].

In human breast cancer, cathepsin D (CTSD), IL4 
receptor (IL4R), mucin-1 (MUC1, CD227), and serine 
protease 3 (PRSS3) may serve as valuable biomarkers for 
the diagnosis and treatment of breast cancer [20–23]. 
Breast cancer is divided into different types based on 
pathology features. A single protein or RNA is unlikely 
to fulfill the criteria for identifying all types of breast 
cancer, resulting in missed diagnosis and overdiagnosis. 
Therefore, prognostic models based on multiple protein 
biomarkers have great potential for the diagnosis and 
prognosis of patients with breast cancer.

In this study, we downloaded the protein expression 
profile of breast invasive carcinoma (BRCA) from the 
Cancer Proteome Atlas (TCPA) database, and based on 
the Kaplan–Meier method and Cox regression analysis, 
we constructed a prognostic risk model for BRCA.

Materials and methods
Protein data acquisition and processing
The Cancer Proteome Atlas (TCPA) database provides 
the protein expression profiles for a variety of human 
cancers by integrating reversed-phase protein array 
(RPPA) chip data from The Cancer Genome Atlas 
(TCGA) database and several independent tumor 
research projects [24]. The TCPA database contains two 
separate web applications, one of which is the RPPA data 
for the patients with tumors, containing approximately 
8000 cancer samples from 32 cancer types in the TCGA 
database, and another approximately 500 samples from 
an independent patient cohort. We downloaded the level 
4 dataset of the BRCA protein expression profile from 
the TCPA database (http://​www.​tcpap​ortal.​org/​tcpa/) 
[25]. Matching clinical information of BRCA patients 
was downloaded from the TCGA database (http://​
portal.​gdc.​cancer.​gov/), which is the currently largest 
cancer genetic information database. The missing data 
of the protein expression profiles were filled in with the 
“impute” package in the R software. Survival information 
was extracted from the clinical data and merged with the 
protein expression profile using Perl software.

http://www.irac.fr
http://www.tcpaportal.org/tcpa/
http://portal.gdc.cancer.gov/
http://portal.gdc.cancer.gov/
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Screening the prognosis‑related proteins
Kaplan–Meier (KM) survival analysis and univariate Cox 
analysis were used to screen the prognosis-related protein 
by the “survival” package in R software [26]. The patients 
were divided into two groups according to the protein 
expression and the KM method was used to analyze the 
difference of the two groups (p value < 0.05). The COX 
method compared protein expression as a continuous 
variable with survival time to observe whether there 
was a correlation (p value < 0.05). R packages “ggplot2” 
and “ggrepel” were used to draw the volcano map of 
differently expressed proteins [27]. Proteins with Hazard 
ratio (HR) < 1were considered as low-risk proteins, while 
proteins with HR > 1 were considered high-risk proteins.

Constructing the protein prognostic risk model
The proteins with statistical difference were analyzed by 
multivariate Cox analysis and to build a prognostic risk 
model with the “survival” package in R software [28]. 
The coefficients of each protein in the model and the 
risk values of all samples were obtained. The risk score 
formula was defined as follows: risk score = (Coefficient 
Protein1 × expression of Protein1) + (Coefficient 
Protein2 × expression of Protein2) + ⋯ + (Coefficient 
Proteinn × expression of Proteinn) [29]. Patients were 
divided into high risk group and low risk group according 
to the median of the risk value.

Assessing the protein prognostic risk model
The survival analysis of protein expression and risk 
values was conducted by the “survminer” and “survival” 
packages in R software. Risk curves, including the 
risk score, survival time, and protein expression, 
were performed using the “pheatmap” package. An 
independent prognostic analysis was using Perl software 
and the “survival” package based on the risk score 
and clinical data of each sample. The age, pathology 
stage, tumor (T), metastasis (M), node (N) states, and 
riskScore of the sample were considered by univariate 
and multivariate Cox analyses. The receiver operating 
characteristic (ROC) curve was analyzed by the 
“survivalROC” package in R software.

Validating the protein prognostic risk model
Microarray datasets, including gene expression 
profiles and corresponding clinical information data of 
GSE88770, were downloaded from the Gene Expression 
Omnibus database (GEO, https://​www.​ncbi.​nlm.​nih.​gov/​
geo/). GSE88770 was conducted by GPL570 (Affymetrix 
Human Genome U133 Plus 2.0 Array), including 117 
breast cancer samples that were enrolled in our testing 
dataset. The expression profiles of mRNAs from GEO are 

shown as raw data and each mRNA was normalized by 
log2 transformation for further analysis.

Expression of prognosis‑related proteins and their 
encoding genes
The UALCAN portal (http://​ualcan.​path.​uab.​edu/​analy​
sis-​prot.​html) analyzed the expression of prognosis-
related proteins and their encoding genes using the 
Clinical Proteomic Tumor Analysis Consortium (CPTAC) 
dataset (http://​prote​omics.​cancer.​gov/​progr​ams/​cptac) 
and TCGA database. The immunohistochemical images 
of these proteins were obtained from the Human Protein 
Atlas (https://​www.​prote​inatl​as.​org/).

Functional enrichment analysis
The functional enrichment analysis was constructed 
using the Database for Annotation, Visualization, and 
Integrated Discovery (DAVID) Bioinformatics Resources 
6.8 (https://​david.​ncifc​rf.​gov/​home.​jsp) including Gene 
Ontology (GO) analysis and Kyoto Encyclopedia of 
Genes and Genomes (KEGG) pathway enrichment 
analysis [30–34]. We used the bioinformatics online tool 
(http://​www.​bioin​forma​tics.​com.​cn) to display the result.

Immunohistochemistry
Immunohistochemistry was performed as standard pro-
tocols. Tissue sections of tumor and para-tumor tissues 
underwent dewaxing, hydration, antigen repair, and 
blocking, the sections were incubated overnight at 4  °C 
in primary antibody (anti-CDH3, ab242060, Abcam; 
anti-CASP7, ab255818, Abcam; anti-EIF4G1, 15704-1-
AP, Proteintech.). After rinsing in phosphate-buffered 
saline (PBS) three times, the slides were incubated with 
a secondary antibody and the streptavidin–horseradish 
peroxidase in turn. At last, the slides were stained with 
DAB solution. Images were obtained using a direct opti-
cal microscope.

Statistical analysis
R software (version 3.5.1) or Perl software (Strawberry 
Perl 5.30.0.1 64-bit) was performed analyses and chart 
visualize in this study. Statistical analysis of GSE88770 
dataset was performed by using GraphPad Prism version 
8.0 or SPSS version 19.0 software package. A two-tailed 
p < 0.05 was considered statistically significant.

Results
Screening prognostic‑related proteins and constructing 
a prognostic risk model
The major work of this study is shown in Fig. 1. The pro-
tein expression profile of BRCA from the TCPA database 
and clinical data from the TCGA database were processed 

https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
http://ualcan.path.uab.edu/analysis-prot.html
http://ualcan.path.uab.edu/analysis-prot.html
http://proteomics.cancer.gov/programs/cptac
https://www.proteinatlas.org/
https://david.ncifcrf.gov/home.jsp
http://www.bioinformatics.com.cn
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and analyzed. Univariate Cox regression analysis and the 
KM method identified 34 proteins that were significantly 
associated with the survival of BRCA patients, including 
18 high risk proteins (hazard ratio > 1) and 16 low-risk 
proteins (hazard ratio < 1). All the significantly expressed 
proteins are displayed in a volcano plot (Fig. 2, Additional 
file  1: Table  S1). Diahevelled-3 (DVL3, HR = 3.206, 95% 

CI = 1.803–5.702) was the highest-risk protein, while 
placental-cadherin (PCADHERIN, HR = 0.220, 95% 
CI = 0.091–0.533) was the lowest-risk protein. Multi-
variate Cox regression analysis demonstrated that six 
proteins were used to construct the prognostic model, 
including CASPASE7CLEAVEDD198, NFKBP65-pS536, 
PCADHERIN, P27, X4EBP1-pT70, and EIF4G. The for-
mula for the risk model was as follows: Risk Score = CAS-
PA SE7C L E AV E DD198 *  (−  0 .406)  +  NFK BP65-
p S 5 3 6   *   0 . 2 4 2   +   P C A D -
HERIN *  (−  1 .157)  +  P27 *  (−  0 .640)  +  X4EBP1-
pT70 * 0.710 + EIF4G * 0.534. These proteins were 
expressed in all samples and risk values for all patients 
were calculated based on this formula.

Assessing of the protein prognostic risk model
To further develop a comprehensive prognostic risk 
model, we built a risk curve, including risk score, survival 
time, and protein expression. The risk score distribution 
of the BRCA patients is shown in Fig.  3A. The higher 
the risk score, the worse the survival state (Fig. 3B). The 
heatmap displays the expression profiles of the 6 proteins 
in the high-risk and low-risk groups. EIF4G (EIF4G1), 
NFKBP65-pS536 (RELA), and X4EBP1-pT70 (EIF4EBP1) 
were highly expressed in the high-risk score group, while 
CASPASE7CLEAVEDD198 (CASP7), P27 (CDKN1B), 

Fig. 1  The flow diagram of this study

Fig. 2  Volcano plot showing the differently expressed proteins in 
BRCA​
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and PCADHERIN (CDH3) were highly expressed in 
the low-risk score group (Fig.  3C). To evaluate whether 
the prognostic model was independent of other clinical 
factors, we performed univariate and multivariate Cox 
regression analyses. We found that clinical traits were 
associated with survival time and survival state, including 
age, pathology, T stage, M stage, N stage, and risk score, 
by univariate Cox regression analysis. The clinical char-
acteristics of BRCA patients were shown in Additional 
file  1: Table  S2. Univariate Cox analysis demonstrated 
that the risk score (HR 1.600 (1.415–1.809), p < 0.001), 
age (HR 1.042 (1.026–1.059), p < 0.001), stage (HR 2.042 
(1.583–2.633), p < 0.001), T (HR 1.712 (1.344–2.180), 
p < 0.001), M (HR 5.668 (3.024–10.626), p < 0.001), N 
(HR 1.631(1.338–1.988), p < 0.001). Multivariate Cox 
regression analysis again suggested that risk score 
(HR 1.564 (1.355–1.805), p < 0.001) and age (HR 1.037 
(1.021–1.054), p < 0.001) could be viewed as independent 

prognostic factors for BRCA patients (Fig.  4A, B). In 
addition, we divided all samples into high- and low-risk 
groups according to the median risk value of each sam-
ple. Overall survival analysis showed that survival prob-
ability and survival time were significantly decreased in 
the high-risk group compared with the low risk group 
(Fig. 4C). The ROC curve could evaluate the accuracy of 
the prognostic model in predicting the survival time of 
the BRCA patients. The area under the curve (AUC) of 
the risk score was 0.741, suggesting that the predictive 
effectiveness was sensitive and significant for the prog-
nostic risk model (Fig. 4D). These results suggested that 
this prognostic model could be viewed as an independ-
ent factor to accurately predict the survival time of BRCA 
patients.

Fig. 3  Construction of a protein prognostic risk model in BRCA. A The distribution of risk score of the BRCA patients. B The survival status of the 
patients based on the risk score. C The expression of the six proteins between the high-risk group and the low risk group
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Validation of the protein prognostic risk model
To demonstrate the prognostic performance and a pos-
sible future application of this model, we downloaded the 
GSE88770 dataset and validated the prognostic model in 
the microarray datasets. The clinical characteristics of 
BRCA patients were shown in Additional file 1: Table S3. 
The results showed that higher risk scores indicated a 
shorter survival time (Fig.  5A, B). Similarly, we found 
significantly higher survival rates in the low-risk group 
than in the high-risk group by overall survival analysis 
(Fig.  5C). The AUC of the risk score in the GSE88770 
dataset was 0.712 indicating good predictive ability of 
the prognostic risk model (Fig.  5D). The above results 
validated that this prognostic model had good predic-
tive performance and could be used to predict the risk of 
BRCA patients.

Survival analysis of the 6 proteins
To investigate the relationship between the expression 
of the 6 proteins and overall survival, we used the KM 
method to carry out survival analysis. According to the 
median value of protein expression, we divided all sam-
ples into high-expression and low-expression groups. 

The higher the protein expression levels were for CAS-
PASE7CLEAVEDD198, P27, and PCADHERIN, the 
better the overall survival (Fig.  6A–C). The higher the 
protein expression levels were for EIF4G, NFKBP65-
pS536, and X4EBP1-pT70, the poorer the overall survival 
(Fig. 6D–F).

Differential expression analysis of the 6 proteins and their 
encoding genes
To better understand the 6 prognosis-related proteins, 
we explored the expression of these proteins using the 
CPTAC dataset. The CASPASE7CLVEADD198 (CASP7), 
PCADHERIN (CDH3), and EIF4G (EIF4G1) were 
expressed at significantly higher levels in tumor tissue 
than in normal tissue, while P27 (CDKN1B), NFKBP65-
pS536 (RELA), and X4EBP1-pT70 (EIF4EBP1) showed 
no difference (Fig. 7A). Except for CDKN1B and RELA, 
the expression levels of CASP7, CDH3, EIF4G1, and 
EIF4EBP1 were increased significantly in most indi-
vidual cancer stages compared with normal samples 
(Fig.  7B). Moreover, we evaluated immunohistochemi-
cal images of these proteins from the Human Protein 
Atlas database (Fig. 7C) and the information of patients 

Fig. 4  Assessment of the prognostic risk model in the BRCA patients. A Univariate Cox regression analysis was performed to assess the prognostic 
model. B Multivariate Cox regression analysis was performed to assess the prognostic model. C The overall survival analysis of the BRCA patients. D 
Receiver operating characteristic (ROC) curve revealed the performance of the prognostic risk model in BRCA​
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were shown in Additional file  1: Table  S4. In addition, 
at the mRNA expression levels, there were differences 
in the expression of these encoding genes except RELA. 
Compared with normal samples, the expression level 
of CASP7, CDKN1B, EIG4G1, and EIF4EBP1 were sig-
nificantly increased in the primary tumor samples, while 
that of CDH3 was significantly decreased (Fig. 8A). Simi-
larly, except for RELA, the other encoding genes were 

expressed differently in the most individual cancer stages 
(Fig. 8B).

To further confirm our analytical results, we used 
breast cancer tissues and paracancerous tissues to verify 
the expression of prognosis-related proteins with immu-
nohistochemistry experiments. Pathology sections infor-
mation was shown in Additional file 1: Tables S5 and S6. 
CDH3 and EIF4G1 were expressed at significantly higher 

Fig. 5  Validation of a protein prognostic risk model in BRCA. A The distribution of risk score. B The survival status of the patients based on the risk 
score. C The overall survival analysis of the BRCA patients. D The ROC curve of the prognostic risk model in GSE88770 dataset
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levels in breast cancer tissues than in paracancerous tis-
sues, but CASP7 was not (Fig. 9).

Functional enrichment analysis
To determine the functions of these encoding genes, we 
performed the functional enrichment analysis by DAVID. 
KEGG pathway analysis indicated that these genes were 
mainly related to the HIF-1 and PI3K-AKT signaling 
pathways (Fig.  10A). GO analysis suggested that these 
genes were mainly located in the cytoplasm, cytosol, and 
nucleoplasm, and participated in certain biological pro-
cesses, such as response to drug and positive regulation 
of cell proliferation (Fig. 10B).

Discussion
Through combined analysis of the TCGA and TPCA 
datasets, cancer proteomics was used to study the patho-
genesis and prognosis of tumors at the protein level and 
to explore candidate proteins that can be used as tumor 
biomarkers. This approach can provide new guidance 
for prognosis and personalized precision medicine of 
tumors. In this study, we obtained BRCA samples from 
the TCPA and TCGA datasets with clinical informa-
tion and protein expression data. We screened six prog-
nosis-related proteins using Kaplan–Meier and Cox 
analysis methods and further constructed a prognostic 

risk model using multivariate Cox analysis. These six 
prognosis-related proteins were PCADHERIN, CAS-
PASE7CLVEADD198, P27, EIF4G, NFKBP65-pS536, and 
X4EBP1-pT70, which were remarkably correlated with 
the overall survival of patients with BRCA. We assessed 
the effectiveness of the prognostic risk model in the 
GSE88770 dataset by survival analysis and ROC curve 
analyses. This study indicated that the prognostic risk 
model could serve as a sensitive independent prognos-
tic factor and effectively predict the prognosis of BRCA 
patients.

Studies have shown that some of the prognosis-related 
proteins are involved in the prognosis of malignancy. 
Caspase-7 is the main executioner of mitochondrial 
apoptosis. Apoptosis maintains the homeostasis 
balance between cell proliferation and cell death. The 
dysregulation of apoptosis can lead to cancer [35]. As 
an indicator of apoptosis impairment, high cleaved 
caspase-7 levels indicate a decreased risk in BRCA and 
may be an alternative prognostic biomarker of clinical 
outcome [36]. In colorectal cancer (CRC) patients, the 
upregulation of caspase-7 caused by downregulation 
of sterol regulatory element binding proteins (SREBP1) 
may improve chemosensitivity to gemcitabine in CRC 
cells, which may serve as a novel prognostic biomarker 
for CRC [37]. This is basically consistent with the results 

Fig. 6  The relationship between the expression of 6 proteins and survival analysis of BRCA patients. The high expressive of CASPASE7CLEAVEDD198 
(A), P27 (B), PCADHERIN (C) were better overall survival. The high expressive of EIF4G (D), NFKBP65_pS536 (E), X4EBP1_pT70 (F) were worse overall 
survival
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Fig. 7  The expression of 6 proteins in BRCA. A The expression of 6 proteins in normal samples and tumor samples of BRCA. B The expression of 6 
proteins in different stage of BRCA. C 6 proteins expressions in the Human Protein Atlas database
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Fig. 8  The expression of 6 encoding genes in BRCA. A The expression of 6 encoding genes in normal samples and tumor samples of BRCA. B The 
expression of 6 encoding genes in different stage of BRCA​

Fig. 9  The expression of 3 differential proteins was analyzed by immunohistochemistry assay
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of our studies. High expression of caspase-7 is associated 
with a good prognosis. Placental-cadherin (CDH3) is a 
cell adhesion molecule that has different roles in different 
tumors. CDH3 is highly expressed and promotes 
tumorigenesis in pancreatic cancer, gastric cancer, and 
breast cancer, while it is expressed at low levels and 
suppresses tumorigenesis in non-small-cell lung cancer, 
hepatocellular carcinoma and thyroid cancer [38–41]. 
P27 is an atypical tumor suppressor that regulates the 
cell cycle, cell migration and development and plays 
both tumor-suppressive and oncogenic roles [42, 43]. 
Deletion or mutational inactivation in the p27 gene is 
rare in human cancers. However, excessive proteolysis 
of p27 results in loss of growth restraint function in 
human cancers [44]. In PI3K/AKT activated cancers, 
C-terminally phosphorylated p27 is overexpressed in 
the cytoplasm and nucleus, and binds proteins to drive 
tumor progression, which shifts p27 from a cyclin-
dependent kinase inhibitor to an oncogene [45]. In 
PI3K/AKT-activated human breast cancers, highly 
stable  p27 accumulates in the cytoplasm and increases 
tumor metastasis, which is associated with poor patient 
outcome [46]. p27 is a key target of miR-221/222 
in triple-negative breast cancer [47]. In our study, 
the expression of p27 was positively correlated with 
prognosis. NF-κB is a family of ubiquitous transcription 
factors that regulate DNA transcription, cytokine 
production, and cell survival [48]. The NF-κB signaling 
pathway plays an important role in inflammation and 
the immune response. Inflammatory cytokines can drive 
NF-κB activation within the tumor microenvironment. 

In solid tumors, NF-κB is activated and promotes cancer 
cell growth and metastasis in breast, pancreatic, and 
colorectal cancers [49–51]. RELA/p65 is an important 
subunit of the NF-κB family, and Ser536 is an important 
phosphorylation site in RELA/p65. The phosphorylation 
of p65 at Ser536 was upregulated with the maturation 
and apoptotic shedding of epithelial cells in normal 
colon mucosa but was downregulated in colon cancer. 
In colon, breast, and prostate cancer cells, the RELA/
p65 phosphomimetic mutation at Ser536 triggered 
dramatic apoptosis and suppressed tumor growth by 
affecting the expression of genes related to cell death or 
survival in nude mice [52]. In our study, the expression 
of RELA/p65 showed no significant difference between 
normal breast tissue and tumor breast tissue. The 
phosphorylation of p65 at Ser536 is a high-risk protein 
in BRCA. EIF4G1 is the major isoform of the EIF4G 
family and is a critical component of the eukaryotic 
initiation factor (EIF)4F complex. EIF4G1 is required for 
cap-dependent mRNA translation which is a necessary 
process for tumor growth and survival. Studies suggest 
that EIF4G1 is overexpressed in several solid tumors 
and plays an important role in the tumorigenesis. High 
expression of EIF4G1 has been found in various tumors 
and is associated with poor prognosis, including breast, 
lung, hypopharyngeal, and nasopharyngeal cancers [53–
55], which is consistent with our findings. Recent studies 
suggest that high expression of EIF4G1 is associated with 
poor prognosis of pancreatic ductal adenocarcinoma 
and prostate cancer and may serve as a novel prognostic 
biomarker [56, 57]. Based on previous studies, these 

Fig. 10  Functional enrichment analysis were performed by DAVID. A KEGG pathway analysis of 6 encoding genes. B GO analysis of 6 encoding 
genes
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prognosis-related proteins play an important role in 
various tumors. Our study further reveals the prognostic 
roles of these proteins in BRCA.

Conclusions
In summary, we constructed and assessed a prognostic 
risk model based on these proteins for BRCA patients. 
There are few protein databases that can be used 
publicly and contain relevant clinical information at 
present. Therefore, we chose GSE database to verify 
the prognostic model at the mRNA levels. The validate 
results showed that this prognostic model had good 
predictive performance and could be used to predict 
the risk of BRCA patients, which could explain the role 
of the protein prognosis model to a certain extent. The 
prognostic risk model will provide new insight into the 
diagnosis and prognosis of BRCA. In the future, we will 
continue to collect clinical samples and explore new 
databases for a more comprehensive validation.
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